Solving second-order conic systems with variable precision

نویسندگان

  • Felipe Cucker
  • Javier Peña
  • Vera Roshchina
چکیده

We describe and analyze an interior-point method to decide feasibility problems of second-order conic systems. A main feature of our algorithm is that arithmetic operations are performed with finite precision. Bounds for both the number of arithmetic operations and the finest precision required are exhibited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize

Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...

متن کامل

Risk optimization with p-order conic constraints: A linear programming approach

The paper considers solving of linear programming problems with p-order conic constraints that are related to a certain class of stochastic optimization models with risk objective or constraints. The proposed approach is based on construction of polyhedral approximations for p-order cones, and then invoking a Benders decomposition scheme that allows for efficient solving of the approximating pr...

متن کامل

Optimal Correction of Infeasible Systems in the Second Order Conic Linear Setting

In this paper we consider correcting infeasibility in a second order conic linear inequality by minimal changes in the problem data. Under certain conditions, it is proved that the minimal correction can be done by solving a lower dimensional convex problem. Finally, several examples are presented to show the efficiency of the new approach.

متن کامل

Conic mixed-integer rounding cuts

A conic integer program is an integer programming problem with conic constraints.Manyproblems infinance, engineering, statistical learning, andprobabilistic optimization aremodeled using conic constraints. Herewe studymixed-integer sets definedby second-order conic constraints.We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second...

متن کامل

Feasibility study of presenting a dynamic stochastic model based on mixed integer second-order conic programming to solve optimal distribution network reconfiguration in the presence of resources and demand-side management

Nowadays, with the use of devices such as fossil distributed generation and renewable energy resources and energy storage systems that are operated at the level of distribution networks, the problem of optimal reconfiguration has faced major challenges, so any change in the power of this resources can have different results in reconfiguration. Similarly, load changes during the day can lead to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2015